In the Linux kernel, the following vulnerability has been resolved:
drm/vgem-fence: Fix potential deadlock on release
A timer that expires a vgem fence automatically in 10 seconds is now
released with timer_delete_sync() from fence->ops.release() called on last
dma_fence_put(). In some scenarios, it can run in IRQ context, which is
not safe unless TIMER_IRQSAFE is used. One potentially risky scenario was
demonstrated in Intel DRM CI trybot, BAT run on machine bat-adlp-6, while
working on new IGT subtests syncobj_timeline@stress-* as user space
replacements of some problematic test cases of a dma-fence-chain selftest
[1].
[117.004338] ================================
[117.004340] WARNING: inconsistent lock state
[117.004342] 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 Tainted: G S U
[117.004346] --------------------------------
[117.004347] inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-W} usage.
[117.004349] swapper/0/0 [HC1[1]:SC1[1]:HE0:SE0] takes:
[117.004352] ffff888138f86aa8 ((&fence->timer)){?.-.}-{0:0}, at: __timer_delete_sync+0x4b/0x190
[117.004361] {HARDIRQ-ON-W} state was registered at:
[117.004363] lock_acquire+0xc4/0x2e0
[117.004366] call_timer_fn+0x80/0x2a0
[117.004368] __run_timers+0x231/0x310
[117.004370] run_timer_softirq+0x76/0xe0
[117.004372] handle_softirqs+0xd4/0x4d0
[117.004375] __irq_exit_rcu+0x13f/0x160
[117.004377] irq_exit_rcu+0xe/0x20
[117.004379] sysvec_apic_timer_interrupt+0xa0/0xc0
[117.004382] asm_sysvec_apic_timer_interrupt+0x1b/0x20
[117.004385] cpuidle_enter_state+0x12b/0x8a0
[117.004388] cpuidle_enter+0x2e/0x50
[117.004393] call_cpuidle+0x22/0x60
[117.004395] do_idle+0x1fd/0x260
[117.004398] cpu_startup_entry+0x29/0x30
[117.004401] start_secondary+0x12d/0x160
[117.004404] common_startup_64+0x13e/0x141
[117.004407] irq event stamp: 2282669
[117.004409] hardirqs last enabled at (2282668): [<ffffffff8289db71>] _raw_spin_unlock_irqrestore+0x51/0x80
[117.004414] hardirqs last disabled at (2282669): [<ffffffff82882021>] sysvec_irq_work+0x11/0xc0
[117.004419] softirqs last enabled at (2254702): [<ffffffff8289fd00>] __do_softirq+0x10/0x18
[117.004423] softirqs last disabled at (2254725): [<ffffffff813d4ddf>] __irq_exit_rcu+0x13f/0x160
[117.004426]
other info that might help us debug this:
[117.004429] Possible unsafe locking scenario:
[117.004432] CPU0
[117.004433] ----
[117.004434] lock((&fence->timer));
[117.004436] <Interrupt>
[117.004438] lock((&fence->timer));
[117.004440]
*** DEADLOCK ***
[117.004443] 1 lock held by swapper/0/0:
[117.004445] #0: ffffc90000003d50 ((&fence->timer)){?.-.}-{0:0}, at: call_timer_fn+0x7a/0x2a0
[117.004450]
stack backtrace:
[117.004453] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G S U 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 PREEMPT(voluntary)
[117.004455] Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER
[117.004455] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
[117.004456] Call Trace:
[117.004456] <IRQ>
[117.004457] dump_stack_lvl+0x91/0xf0
[117.004460] dump_stack+0x10/0x20
[117.004461] print_usage_bug.part.0+0x260/0x360
[117.004463] mark_lock+0x76e/0x9c0
[117.004465] ? register_lock_class+0x48/0x4a0
[117.004467] __lock_acquire+0xbc3/0x2860
[117.004469] lock_acquire+0xc4/0x2e0
[117.004470] ? __timer_delete_sync+0x4b/0x190
[117.004472] ? __timer_delete_sync+0x4b/0x190
[117.004473] __timer_delete_sync+0x68/0x190
[117.004474] ? __timer_delete_sync+0x4b/0x190
[117.004475] timer_delete_sync+0x10/0x20
[117.004476] vgem_fence_release+0x19/0x30 [vgem]
[117.004478] dma_fence_release+0xc1/0x3b0
[117.004480] ? dma_fence_release+0xa1/0x3b0
[117.004481] dma_fence_chain_release+0xe7/0x130
[117.004483] dma_fence_release+0xc1/0x3b0
[117.004484] ? _raw_spin_unlock_irqrestore+0x27/0x80
[117.004485] dma_fence_chain_irq_work+0x59/0x80
[117.004487] irq_work_single+0x75/0xa0
[117.004490] irq_work_r
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
backlight: led-bl: Add devlink to supplier LEDs
LED Backlight is a consumer of one or multiple LED class devices, but
devlink is currently unable to create correct supplier-producer links when
the supplier is a class device. It creates instead a link where the
supplier is the parent of the expected device.
One consequence is that removal order is not correctly enforced.
Issues happen for example with the following sections in a device tree
overlay:
// An LED driver chip
pca9632@62 {
compatible = "nxp,pca9632";
reg = <0x62>;
// ...
addon_led_pwm: led-pwm@3 {
reg = <3>;
label = "addon:led:pwm";
};
};
backlight-addon {
compatible = "led-backlight";
leds = <&addon_led_pwm>;
brightness-levels = <255>;
default-brightness-level = <255>;
};
In this example, the devlink should be created between the backlight-addon
(consumer) and the pca9632@62 (supplier). Instead it is created between the
backlight-addon (consumer) and the parent of the pca9632@62, which is
typically the I2C bus adapter.
On removal of the above overlay, the LED driver can be removed before the
backlight device, resulting in:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
Call trace:
led_put+0xe0/0x140
devm_led_release+0x6c/0x98
Another way to reproduce the bug without any device tree overlays is
unbinding the LED class device (pca9632@62) before unbinding the consumer
(backlight-addon):
echo 11-0062 >/sys/bus/i2c/drivers/leds-pca963x/unbind
echo ...backlight-dock >/sys/bus/platform/drivers/led-backlight/unbind
Fix by adding a devlink between the consuming led-backlight device and the
supplying LED device, as other drivers and subsystems do as well.
In the backup parameters, a user with high privilege is able to concatenate custom instructions to the backup setup. Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability in Centreon Infra Monitoring (Backup configuration in the administration setup modules) allows OS Command Injection.This issue affects Infra Monitoring: from 25.10.0 before 25.10.2, from 24.10.0 before 24.10.15, from 24.04.0 before 24.04.19.
A vulnerability was identified in itsourcecode Society Management System 1.0. This affects an unknown part of the file /admin/edit_activity_query.php. The manipulation of the argument Title leads to sql injection. The attack may be initiated remotely. The exploit is publicly available and might be used.
QOCA aim AI Medical Cloud Platform developed by Quanta Computer has a SQL Injection vulnerability, allowing authenticated remote attackers to inject arbitrary SQL commands to read database contents.
QOCA aim AI Medical Cloud Platform developed by Quanta Computer has an Arbitrary File Upload vulnerability, allowing authenticated remote attackers to upload and execute web shell backdoors, thereby enabling arbitrary code execution on the server.
Any client who can access to Apache Kyuubi Server via Kyuubi frontend protocols can bypass server-side config kyuubi.session.local.dir.allow.list and use local files which are not listed in the config.
This issue affects Apache Kyuubi: from 1.6.0 through 1.10.2.
Users are recommended to upgrade to version 1.10.3 or upper, which fixes the issue.
A vulnerability was determined in Tenda AC1206 15.03.06.23. Affected by this issue is the function formBehaviorManager of the file /goform/BehaviorManager of the component httpd. Executing a manipulation of the argument modulename/option/data/switch can lead to command injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized.
A vulnerability was found in SourceCodester API Key Manager App 1.0. Affected by this vulnerability is an unknown functionality of the component Import Key Handler. Performing a manipulation results in cross site scripting. The attack can be initiated remotely.
QOCA aim AI Medical Cloud Platform developed by Quanta Computer has a Missing Authorization vulnerability, allowing authenticated remote attackers to modify specific network packet parameters, enabling certain system functions to access other users' files.
QOCA aim AI Medical Cloud Platform developed by Quanta Computer has a Path Traversal vulnerability, allowing authenticated remote attackers to read folder names under the specified path by exploiting an Absolute Path Traversal vulnerability.
QOCA aim AI Medical Cloud Platform developed by Quanta Computer has a Path Traversal vulnerability, allowing authenticated remote attackers to read folder names under the specified path by exploiting an Absolute Path Traversal vulnerability.